A new approach to bootstrap inference in functional coefficient models

نویسندگان

  • Helmut Herwartz
  • F. Xu
چکیده

We introduce a new, factor based bootstrap approach which is robust under heteroskedastic error terms for inference in functional coefficient models. Modeling the functional coefficient parametrically, the bootstrap approximation of a test statistic used for inference on parameter invariance is shown to hold asymptotically. In simulation studies, the factor based bootstrap inference outperforms the wild bootstrap and pairs bootstrap approach in small samples. Furthermore, in semiparametric modeling only testing by means of factor based bootstrap provides correct empirical size estimates. While via wild bootstrap based testing overrejects the null hypothesis for both homoand heteroskedastic error terms, tests via pair bootstrap underreject the null hypothesis under prevalence of homoskedastic error terms. Applying the functional coefficient model to a cross sectional investment regression on savings, the saving retention coefficient is found to depend on third variables as the population growth rate and the openness ratio.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price

Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...

متن کامل

Goodness of Fit Tests in Random Coefficient Regression Models]

Random coefficient regressions have been applied in a wide range of fields, from biology to economics, and constitute a common frame for several important statistical models. A nonparametric approach to inference in random coefficient models was initiated by Beran and Hall. In this paper we introduce and study goodness of fit tests for the coefficient distributions; their asymptotic behaviour u...

متن کامل

TESTING FOR AUTOCORRELATION IN UNEQUALLY REPLICATED FUNCTIONAL MEASUREMENT ERROR MODELS

In the ordinary linear models, regressing the residuals against lagged values has been suggested as an approach to test the hypothesis of zero autocorrelation among residuals. In this paper we extend these results to the both equally and unequally replicated functionally measurement error models. We consider the equally and unequally replicated cases separately, because in the first case the re...

متن کامل

A New Robust Bootstrap Algorithm for the Assessment of Common Set of Weights in Performance Analysis

The performance of the units is defined as the ratio of the weighted sum of outputs to the weighted sum of inputs. These weights can be determined by data envelopment analysis (DEA) models. The inputs and outputs of the related (Decision Making Unit) DMU are assessed by a set of the weights obtained via DEA for each DMU. In addition, the weights are not generally common, but rather, they are ve...

متن کامل

Comparing two testing procedures in unbalanced two-way ANOVA models under heteroscedasticity‎: Approximate degree of freedom and parametric bootstrap approach

‎The classic F-test is usually used for testing the effects of factors in homoscedastic two-way ANOVA models‎. ‎However‎, ‎the assumption of equal cell variances is usually violated in practice‎. ‎In recent years‎, ‎several test procedures have been proposed for testing the effects of factors‎. ‎In this paper‎, ‎the two methods that are approximate degree of freedom (ADF) and parametric bootstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2009